





ENTROPY AND UNCERTAINTY 261
1/6 (i = 1,...,6).2 If, instead the constraint specifies
E[ number of spots on next roll | = 4.5 (3)

instead of the value 3.5 (for a fair die), the MAXENT solution (Jaynes, 1978)
is (to five places):

{p1,...,pe} = {.05435,.07877, .11416, .16545, .23977, 34749} . (4)

Note that in (4) the probabilities are shifted away from the uniform dis-
tribution to lie on a smooth (convex) curve. increasing (derteasing) in. n.
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vincing. (See especially Dias and Shimony, 1981; Frieden, 1984; Friedman
and Shimony, 1971; Rowlinson, 1970; Shimony, 1973. Jaynes offers selected
rebuttal in (1978) ) In what Tollows I present concerns I have primarily
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(S1) Us is a continuous function of the pi’s.

(S2) When P = {1/n,...,1 /n} is the uniform distribution on n-states,
Us 1s monotonically increasing in n, the number of states over which one
is uncertain.

(S3) Us is additive over decomposition of the sample space of possi-
ble outcomes. That is, let 0 = {s,.. .»Sn} be the set of (n) possi-
ble outcomes, and let 0 be partitioned into m < n disjoint subsets
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Now, it is clear that Py(-) = Py(- | €), since P; satisfies cx,;. Define a prob-
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dicting the assumption that P, is the MAXENT solution for constraints Cj.
To verify that PO satisfies Cp, note that the class of distributions satisfying
a constraint set is convex (see Appendix A), and note that P; does (since it
satisfies C1) and that either Py(e) = 1 whence P} = Py, or else Po( |~ €)
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for continuous distributions.

In the case of discrete distributions, (6) is related to (2) in a straightfor-
ward fashion. Whereas Us purports to measure the residual uncertainty in
a distribution, i.e., Us attempts to quantify how far a distribution is from
certainty—how far a distribution is from 0-1 probability— I reports the
decrease in uncertainty in shifting from P° to P1. If we set PU as the uni-
form distribution over the finite space X of P° (so that PU is the MAXENT
distribution (no constraints) over X), and if we set P+ as a 0-1, point dis-
tribution over X (so that P+ depicts a state of certainty with respect to X),

| L .

(See Hobson and Cheng, 1973.) Moreover, Hobson (1971) showed that I is
characterized by five properties (three of which parallel Shannon’s conditions
for U SLTO wit, (up tc a constant) Ix uniquely satisfies ‘
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- variables, some (Bayesian) conditionalizations do not agree with the revi-
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of a cubical die (with spots from 1 to 6 arranged in conventional order), then
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one-spot uppermost , ..., six-spot uppermost, equal probability (1/6). Or,
you can cite Insufficient Reason to partition the outcomes in two: one-spot
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Table 1. (‘Yes’/‘No’ identifies which arrangements are possible.)

# annta shawine

1 No No Yes
2 Yes No Yes
3 Yes Yes Yes
4 Yes No Yes
5 Yes Yes Yes
6 Yes Yes Yes

" priority in the application of Insufficient Reason. Of course, what is lacking
is a judgement of relevance of the refinement introduced by considering the
(nuisance) factor: sum of spots showing on side face(s).

Does the MAXENT program offer new guidance in this old problem?

We noted (in discussion of Shannon’s condition z-,\__n 2682 thagrall knase |
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where p; (f = 1, ~ ., 86) is the probability of i-spots showing up.

However, since the alternative partition (Table 1) is a refinement of the
six-fold partition used above, the constraint (10) applies there too. Specif-
ically, define f( state ;) ( = 1,...,14—counting across possible states in
Table 1) as follows:

f(éta.tel) = 1, f(statey) = f(states) = 2,
f(statey) = f(states) = f(stateg) = 3,

f(states) = f(stateg) = 4, .
f(stateg) = f(stateyo) = f(state;;) =5,
and )

X flstatea) = flahata-g\g [ytata-d — 4

. " "s;a________

i
p

Then (10) is equivalent to the constraint:
E[f] = 55/14. (12)

But the distribution over the 14 states which maximjzes enfrany suhiech to
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~the MAXENT principle is coherent (from a Bayesian point of view) returns
us to the question of the previous section. Under which conditions can we

extend (refine) the field of events, while preserving MAXENT solutions for
a given set of constraints?
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5. COMMENTS ON THE CONCENTRATION THEOREM
(JAYNES, 1979 AND SEE (1963, PP. 51-52))

ble outcomes on a given trial. Let f; (1 <t < n be the observed relative

Igg ]‘;Eii ff_f‘hg ) " E:ﬂ-pnmn) in thoca N triale _Than tha nlaco ~f aarainnens .

linear in these frequencies, is asymptotically (with N — oco) concentrated as
y2/(2N) (with n — m — 1 degrees of freedom) about the MAXENT distribu- ) .
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the MAXENT probability is determined by the (asymptotic) proportion of
these states with frequencies close to the MAXEN T distribution. Why is this
a problem? It is because, if the concentration about the MAXENT S.‘l],l.&i"“r
e —
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paradoxes” (due to Dawid et al., 1973). As Dawid et al. use their anoma-
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(1971) formulation, it is supposed there is one state whose magnitude a,,
equals the average of the n magnltudes m = (1 / n) E‘ 1 @i Thls condl-
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I thank Prof. E. Greenberg for alerting me to Frieden’s recent work.

APPENDIX A: ON THE MAXENT FORMALISM

Here we review some of the qpathomating £22 -1 1 10 2 icemeoe
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and use the argument which follows to establish the desired property for each
Pl . By continuity of cross-entropy shifts, the desired property obtains for
' thelr limit, P} ) Reﬁne X toY so that P2 is umform onY. (Thisis pos51ble
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¢ in the measure space (Y,Y). By the lemma (above), the minimum cross-
entropy shift from PJ to P} agrees with the minimum cross-entropy shift
from P$ to Py on X. But, with P$ uniform on Y, the minimum cross-
entropy shift is just the MAXENT distribution P, in the measure space
(Y, Y), subject to the constraint c¢. Then apply Result 4 to show that P}
hns thd~imndmagnartreen B Trowite RLLF.Y S POLR,) wwlacn DI — DO !
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